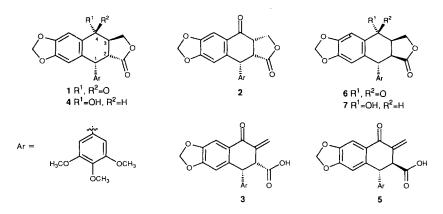
133. Reassignment of the Configuration of Several Keto-cyclolignans Prepared from Podophyllotoxin


by José María Miguel del Corral, Marina Gordaliza, José-Luis López*, Esther del Olmo, M. Angeles Castro, and M. Luisa López

Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Salamanca, Avda. Campo Charro s/n, E-37007 Salamanca

(6. IV. 95)

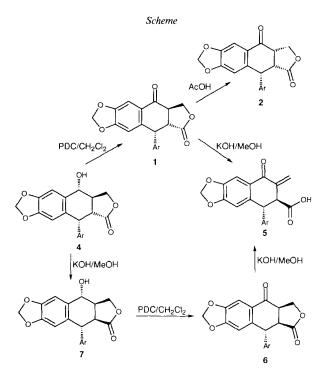
The configuration of several keto-cyclolignans related to podophyllotoxin has been reviewed. Under basic catalysis, the configuration at the C-atom in α -position to the lactone carbonyl group in podophyllotoxone is inverted instead of the C-atom in α -position to the ketone group, as it has been reported.

Last year, in a paper published in this Journal, *Höfert* and *Matusch* reported a 'novel rearrangement of podophyllotoxone' [1]. They described the epimerization of podophyllotoxone (1) at $C(3) \alpha$ to the C(4)=O, and the formation of isopicropodophyllone (2), in equilibrium with 1, when treating the former substance with BuLi in refluxing Et₂O. Subsequently, preparation of the unsaturated keto-acid 3 and several other derivatives were reported.

It is well known that the *trans*-fused lactone podophyllotoxin (4) and its derivatives readily epimerize at C(2), leading to the more stable *cis*-fused picro analogues, in basic or even neutral media [2]. However, those authors assigned the structure of 2 to the epimerization product, based on the speculative assumption that the greater acidic character of H at C(3) as compared to H at C(2) is sufficient to favor the transformation of 1 into 2. They did not provide any experimental proof or calculations supporting that assumption.

We believe that $H\ddot{o}fert$ and Matusch did not realize that the spectral properties they observed for compounds 2 and 3 almost perfectly matched those published by us for

picropodophyllone (6) and thuriferic acid (5), respectively [3], because no reference to our paper, reporting the structure assignment of 5 and related compounds, was mentioned in [1].


The aim of this communication is to correct the structures proposed by *Höfert* and *Matusch* for most of the compounds reported in [1].

Thus, podophyllotoxone (1), prepared by oxidation of podophyllotoxin (4) [4], was equilibrated in refluxing AcOH to obtain a mixture containing the C(3)-epimer, isopicropodophyllone (2; *Scheme*). Further, picropodophyllin (7), prepared by epimerization of podophyllotoxin (4), was transformed into picropodophyllone (6) through PDC oxidation [5]. NMR Data for the keto derivatives are shown in *Tables 1* and 2.

Spectral data of 2 coincide with those reported in [6] for isopicropodophyllone, whereas data for compound **6** is in agreement with those reported by $H\ddot{o}fert$ and Matusch [1] for the assigned structure of isopicropodophyllone (named isopodophyllotoxone in [1]).

Finally, the treatment of either 1 and 6 with 1% KOH in MeOH afforded thuriferic acid (5) as the only product in a fair yield, demonstrating that epimerization at C(2) occurred preferentially with respect to C(3) under basic treatment of podophyllotoxone.

It seems obvious that the arguments presented by *Höfert* and *Matusch* failed to justify the structure of the product of the reaction of podophyllotoxone with BuLi. It is evident from calculations¹) (*Fig.*) that H–C(3), α to the keto group, is more acidic than H–C(2),

¹) Atomic charges have been calculated from the lowest-energy conformer using *Stewart*'s Hamiltonian in MOPAC [7].

H-Atom	1	2	6 4.70 (s)	
HC(1)	4.85 (d, J = 4.2)	4.57 (d, J = 5.2)		
HC(2)	3.33 (dd, J = 15.5, 4.2)	3.60 - 3.63(m)	3.29 (m)	
H-C(3)	3.52 (ddd, J = 15.2, 9.6, 7.3)	3.60 - 3.63 (m)	3.29 (m)	
H-C(3a)	4.35(t, J = 9.6);	3.87 (m);	4.36 (dd, J = 9.3, 3.9)	
	4.55 (dd, J = 9.6, 7.3)	4.48 (m)	4.77 (d, J = 9.3)	
H-C(5)	7.52 (s)	7.38(s)	7.50(s)	
H-C(8)	6.71 (s)	6.66(s)	6.70(s)	
H-C(2')	6.34 (s)	6.28(s)	6.21(s)	
H-C(6')	6.34 (s)	6.28(s)	6.21 (s)	
OCH ₂ O	6.07 (d, J = 1.5);	6.05 (d, J = 1.5);	6.00(s)	
	6.10 (d, J = 1.5)	6.10 (d, J = 1.5)		
MeO-C(3')	3.75 (s)	3.72(s)	3.75(s)	
MeO-C(4')	3.81 (s)	3.79(s)	3.81(s)	
MeO-C(5')	3.75(s)	3.72(s)	3.75(s)	

Table 1. ¹H-NMR Data (CDCl₃) for Keto-cyclolignans 1, 2, and 6

Table 2. ¹³C-NMR Data (CDCl₃) for Keto-cyclolignans 1, 2, and 6

C-Atom	1	2	6	C-Atom	1	2	6
C(1)	44.8	44.8	43.3	C(10)	128.3	128.8	127.1
C(2)	46.7	45.1	46.3	C(1')	132.2	133.9	137.3
C(2a)	173.5	175.2	175.3	C(2')	108.0	107.0	104.8
C(3)	43.6	44.3	43.1	C(3')	153.2	153.4	153.6
C(3a)	67.0	69.4	70.2	C(4')	138.0	138.9	137.9
C(4)	192.4	194.1	193.3	C(5')	153.2	153.4	153.6
C(5)	106.3	106.1	105.8	C(6')	108.0	107.0	104.8
C(6)	148.2	148.4	148.2	OCH ₂ O	102.4	102.2	102.0
C(7)	153.2	153.4	153.6	MeO-C(3')	56.6	56.2	56.0
C(8)	109.7	108.6	109.2	MeO-C(4')	60.8	60.8	40.5
C(9)	141.6	139.1	139.4	MeO-C(5')	56.6	56.2	56.0

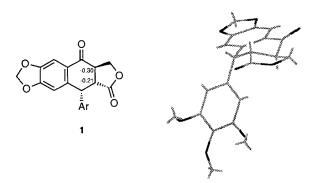


Figure. Comparative electronic and stereochemical aspects for podophyllotoxone (1). Calculated with semiempirical MOPAC 6.0.

 α to the lactone C=O. Moreover, from the stereochemical point of view, the access of bases to H at C(3) is hindered due to the presence of the trimethoxyphenyl group at C(1), which is pseudoaxially disposed.

In conclusion, practically all the structures proposed for those compounds reported in [1] by *Höfert* and *Matusch* should be corrected in the configurations at C(2) and C(3).

Financial support came from the Junta de Castilla y León (SA-64/12/92).

Experimental Part

General. Column chromatography: performed over silica gel (0.063–0.2 mm). Flash chromatographies (FC): with 3–85 ml/min flow rates, over silica gel (0.040–0.063 mm). TLC was performed on precoated silica-gel polyester plates (0.25-mm thickness) with fluorescent indicator UV_{254} . Solns. of 10% phosphomolybdic acid in EtOH or 10% H₂SO₄ in EtOH were used for visualization, after heating at 110°. PLC was developed on silica gel F_{254} plates. M.p.: determined in silicone bath; uncorrected. IR Spectra: in CHCl₃ soln. NMR Spectra: recorded at 200/50 MHz (¹H/¹³C) in CDCl₃ soln., chemical shifts (δ) in ppm, referred to internal TMS, and coupling constants (J) in Hz. Mass spectra (EI): recorded under ionization energy of 70 eV.

Picropodophyllin (7). Compound 4 (150 mg) in 10 ml of 1% KOH in MeOH was stirred for 30 min at r.t. After neutralization and extraction with AcOEt, 140 mg (93%) of 7 were obtained.

Podophyllotoxone (1). Compound 4 (500 mg) in 15 ml of dry CH_2Cl_2 was treated with 600 mg of PDC. The suspension was stirred for 3 h at r.t. Usual workup afforded after FC ($CH_2Cl_2/AcOEt 1:1$) 416 mg (84%) of 1.

Picropodophyllone (6). By the same method described for 1, 200 mg of 6 were obtained from the treatment of 220 mg of 7 with 280 mg of PDC.

Isopicropodophyllone (2). Compound 1 (100 mg) in 7 ml of AcOH was refluxed for 1 h. After addition of H_2O and extraction with AcOEt, the resulting material was chromatographed ($Cl_2CH_2/AcOEt$ 95:5) yielding 70 mg (70%) of 1 and 22 mg of 2.

Thuriferic Acid (5). Compound 1 (110 mg) was treated with 5 ml of 1% KOH/MeOH. The mixture was left 30 min at r.t., yielding, after usual workup and FC, 90 mg of 5. M.p. 92–96° (Et₂O). Spectroscopic and physical data are identical to those reported in [3].

REFERENCES

- [1] P.H. Höfert, R. Matusch, Helv. Chim. Acta 1994, 77, 771.
- [2] W.J. Gensler, C.D. Gatsonis, J. Am. Chem. Soc. 1966, 31, 3224.
- [3] A. San Feliciano, J.L. López, M. Medarde, J.M. Miguel del Corral, B. de Pascual-Teresa, P. Puebla, Tetrahedron 1988, 44, 7255.
- [4] W.J. Gensler, F. Johnson, J. Am. Chem. Soc. 1955, 77, 3674.
- [5] D. E. Jackson, P. M. Dewick, Phytochemistry 1981, 20, 2277.
- [6] D. E. Jackson, P. M. Dewick, Phytochemistry 1984, 23, 1147.
- [7] A General Molecular Orbital Package (Version 6.0). Quantum Chemistry Program Exchange Catalogue (QCPE), 1992.

1796